

Erneuerbares LNG als Kraftstoff – Perspektiven und zu lösende Fragestellungen

Prof. Dr.-Ing. Bert Buchholz

Universität Rostock

LKV - Lehrstuhl für Kolbenmaschinen und Verbrennungsmotoren

01	Einleitung - LNG heute
02	Herausforderung – LNG und THG Neutralität
03	Lösungswege und Forschungsbedarfe
04	Zusammenfassung

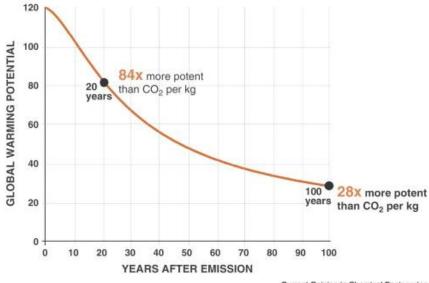
01	Einleitung - LNG heute	
	Herausforderung – LNG und THG Neutralität	
	Lösungswege und Forschungsbedarfe	
	Zusammenfassung	

Status:

- LNG: Nutzung als Kraftstoff im kommerziellen
 Transportgewerbe Truck (long haul) und Schiff
- Gute Speicherdichte und etablierte Betankungsverfahren
- Sehr sauberer Kraftstoff, ermöglicht geringste Schadstoffemissionen (Vergleich zu Diesel):
 - NO_x ♠
 - SO_X
 - PM —
 - CO **♦**
- Wichtiger Beitrag zur lokalen Verbesserung der Luftqualität (Städte, Hafenstädte, Ballungsgebiete – D, EU und international)

Beispiel LNG-Truck

Beispiel Betankung LNG-Schiff


Einleitung – LNG heute

Herausforderung:

- Bereitstellung: LNG heute fast ausschließlich fossil – daher nur geringe CO₂-Vorteile gegenüber Benzin/Diesel
- Nutzung: Einige Motorenkonzepte mit CH₄-Schlupf – massiv negativer Effekt auf THG-Bilanz

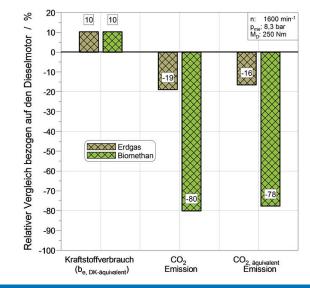
DIRECT AND INDIRECT WARMING COMBINED OVER TIME

Current Opinion in Chemical Engineering

<u>David T Allen</u>, Methane emissions from natural gas production and use: reconciling bottom-up and top-down measurements, <u>Current Opinion in Chemical Engineering, Volume 5</u>, August 2014, Pages 78-83

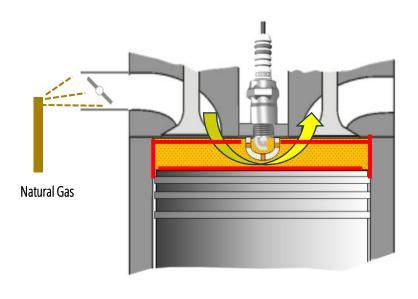
01	Einleitung - LNG heute	
02	Herausforderung – LNG und THG Neutralität	
	Lösungswege und Forschungsbedarfe	
	Zusammenfassung	

Herausforderung – LNG und THG Neutralität



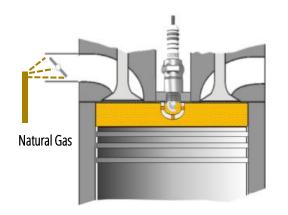
LNG Bereitstellung – THG-Neutralität ist machbar:

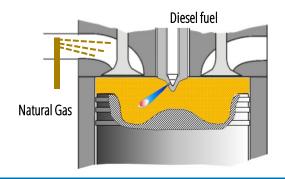
- Ersatz von LNG aus fossilem Erdgas durch LNG aus erneuerbarem Bio-Methan (perspektivisch zusätzliche Nutzung von synthetischem Methan)
- Bio-Methan: je nach Feedstock massive THG
 Reduzierungen bis zur THG-Neutralität in der Erzeugung
- Potential zur Bereitstellung von Bio-Methan/Bio-LNG ist erheblich
- Technologien und Kapazitäten für Transport und Lagerung vorhanden
- Inbetriebnahme der Pilotanlage für erneuerbares
 Methan am DBFZ ist wichtiger Impuls



Herausforderung – LNG und THG Neutralität

Methanschlupf als kritische Herausforderung:


- Was ist Methanschlupf:
 Je nach Brennverfahren verlässt ein Teil des
 zugeführten Methans den Brennraum unverbrannt!
 - Spülverluste
 - Wall quenching
 - Flammenauslöschung
- Stark negativer Einfluß auf THG-Bilanz auch bei Nutzung von regenerativem LNG!
- Maßnahmen zur deutlichen Reduzierung und Vermeidung des Methanschlupfs sind dringend notwendig
- Welche Möglichkeiten gibt es?



	Einleitung - LNG heute	
	Herausforderung – LNG und THG Neutralität	
03	Lösungswege und Forschungsbedarfe	

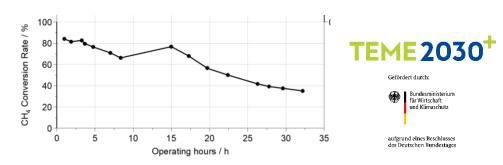
Lösungswege und Forschungsbedarfe

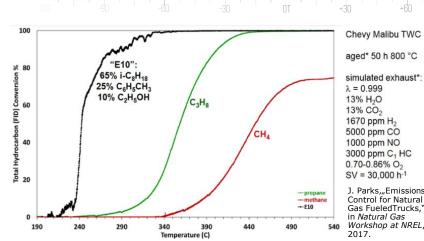
Otto-Gasmotor, stöchiometrisch, λ =1:

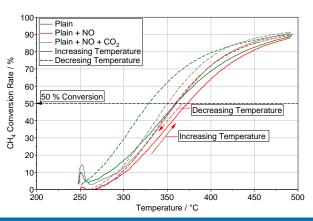
- Vorherrschend by Truck, Bus, NRMM
- Vorgemischtes Brennverfahren, Fremdzündung (Zündkerze), Flammenfront
- Wirkungsgrad und Dynamik gut (relativ hohe Abgastemperaturen) +
- Partikelemissionen und Schwefeloxide extrem gering +
- NO_x und Methanschlupf (Wallquenching) erhöht
- Bei Nutzung von 3-Wege-Kat: NOX und Methanschlupf massiv reduziert + +
- Einfach, robust, zuverlässig, Potentiale bei Wirkungsgrad und Dynamik

Diesel-Gasmotor, Magerbetrieb, oft als Dual-fuel Motor:

- Vorherrschend Schiffsmotor, wegen DF-Fähigkeit
- Vorgemischtes BV, Zündung mit Diesel-Pilot, Premixed und Flammenfront
- Wirkungsgrad sehr gut und Dynamik gut (relativ geringe Abgastemp.) + +
- NO_x, Partikelemissionen und Schwefeloxide extrem gering + +
- Methanschlupf (Wallquenching, z.T. Überspülen) erhöht
- Keine effiziente und zuverlässige Kat-Technologie verfügbar
- Sehr zuverlässig, flexibel, hohe Wirkungsgrade

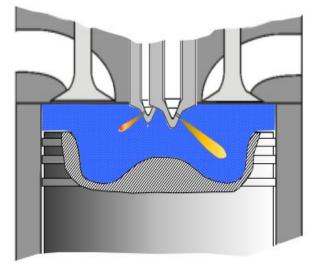



Lösungswege und Forschungsbedarfe



Methan – Herausforderung Abgasnachbehandlung

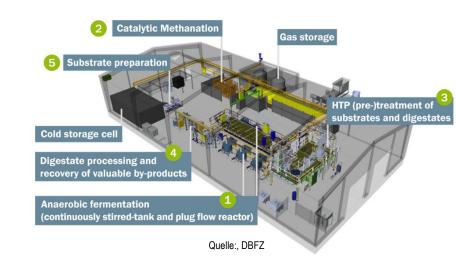
- Methan ist ein sehr stabiles Molekül
- HC-Emissionen eines Gasmotors fast komplett Methan
- Katalytische Abgasnachbehandlung schwierig hohe Light-off Temperaturen und Kats mit hoher Edelmetallbeladung
- Deaktivierung durch OH- Radikal Regeneration nur bei sehr hohen Abgastemperaturen



Lösungswege und Forschungsbedarfe

Alternative: HD Direkteinblasung, Gas-Dieselmotor, Dual-fuel Ausführung möglich:

- Einzelne Anwendungen in Truck und Schiffen
- Dieselverfahren: Luftverdichtung, HD-Gaseinblasung im Bereich OT (oberer Totpunkt), Zündung mit Diesel-Pilot
- Heterogene Gemischbildung, diffusionslimitiertes
 Brennverfahren
- Höchste Wirkungsgrade, höchste Dynamik,
 kraftstoffflexibel (LNG, Propan, Ethan, Ammoniak) + +
- Methanschlupf, Partikelemissionen und Schwefeloxide extrem gering
- NO_x Emissionen erhöht
- Kostengünstige, zuverlässige SCR-Kat-Technologie
- Insgesamt sehr teure Technologie geringe Marktanteile


04	Zusammenfassung	
03	Lösungswege und Forschungsbedarfe	
	Herausforderung – LNG und THG Neutralität	
	Einleitung - LNG heute	

Zusammenfassung – Bereitstellung von erneuerbarem LNG

Erneuerbares LNG - Bereitstellung

- THG-Neutralität in der Bereitstellung möglich
- Uneingeschränkte Kompatibilität zu Infrastrukturen
- Jahresproduktion Biogas in D entspricht einer Energiemenge von ca. 50* bis 87 TWh**, weiteres Potential von ca. 30 bis 50 TWh (Gesamtbedarf Verkehr: 730 TWh)
- Nutzung des biogenen CO₂ im Biogas zur Produktion von E-LNG verdoppelt das Potential

^{*} Quelle:Die Rolle von Biogas für eine sichere Gasversorgung in Deutschland, DBFZ, Mai 2022

^{**}Quelle: Oliver Auras, Erdgas Südwest, "BioLNG für die Energiewende in der Mobilität" Zukunft Gas-Mobilität, Berlin 2018

Erneuerbares LNG – Nutzung im Verkehr

- Ausreichende Energiedichte und sichere Betankung für mobile Anwendungen
- Uneingeschränkte Kompatibilität zu Antriebstechnologien
- Hohe Zuverlässigkeit und Verfügbarkeit gegeben, hohe Wirkungsgrade erreichbar
- Methanschlupf muss zur Sicherstellung der THG-Neutralität vermieden werden
- Forschungsbedarf bei Brennverfahren und Methan-Oxi-Kats
- Berücksichtigung von Methanschlupf in den Gesetzgebungen (z.B. EURO VI und NRMM Stage 5) ermöglicht Markteinführung neuer Technologien

Quelle: MAN E

