

Optimisation of catalysts and process conditions for biomethane production from biogenic waste materials on a pilot scale

Philipp Wilker, Selina Nieß, Marco Klemm DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH Leipzig (Germany)

Project goal

In the Pilot-SBG project, a possible process chain has been set up as a pilot-scale biorefinery to produce methane as a fuel from biogenic residues. Biogenic residues and waste materials are first converted into biogas, which essentially consists of methane (CH_{A}) and carbon dioxide (CO₂). Catalyst-damaging components such as hydrogen sulphide (H2S) are then separated and the CO_2 is catalytically hydrogenated by adding hydrogen (H_2) without prior separation. This refines the biogas into biomethane and achieves a significantly higher biomethane yield and CO₂ reduction compared to conventional methods.

Reactor design

- Reactor type: Fixed bed
- Volume: 570 ml
- Temperature: up to 500 °C

Fig. 1: Methanation module in the pilot plant with two adsorber vessels and a methanation reactor

Start-up process

Operating parameters: Catalyst: Ru on Al₂O₃

• Biogas volume flow = 50 L/h

Biogas composition

- Pressure: up to 20 bar(g)
- Electrical heating and air cooling in three segments

- Reactor pressure = 18 bar(g)
- Reactor target temperature = 320 °C
- H_2/CO_2 ratio = 4

Measurement of the product gas composition using an on-line micro gas chromatograph.

Temperatures in the reactor

44.7% _/ 49.4% CO_{2} CH_{Λ}

Fig. 3: Biogas composition in the storage tank at the start of the experiment

Product gas composition

Scan the QR code and find our focus booklet 'Methanation' with more information on the topic and a direct comparison of biological and catalytic methanation.

www.dbfz.de/en/pilot-sbg

On behalf of:

This publication was carried out on behalf of the Federal Ministry for Digital and Transport under file number 3552.1. The sole responsibility for the content lies with the author.

Fig. 4: Course of the reactor temperatures in the start-up process of the catalytic methanisation of biogas

Fig. 5: Course of the product gas composition in the start-up process of the catalytic methanisation of biogas

Outlook

As part of a statistical test programme, the optimum operating conditions are determined for two selected catalysts as a function of temperature, room speed and H_2/CO_2 ratio. Whether the catalysts are also economically viable is analysed on the basis of an economic and ecological assessment, taking into account the H_2S tolerance of the catalysts.

Fig. 5: Design of experiment for the catalyst evaluation

DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH | Torgauer Straße 116 | 04347 Leipzig | www.dbfz.de | Contact: Philipp.wilker@dbfz.de | Phone: +49 341 2434 458 | As of: 04/2025